Quantified Asthma: Logging All Of My Asthma For 10+ Days

I’ve written before on Quantified Self and the apps that are available to help you quantify your asthma. In that post, I mentioned that the currently available applications—while certainly improved on some past options—don’t hit all of my marks for being a perfect app—an app that would assist me in logging, tracking, journaling, quantifying—whatever you want to call it—my asthma for the longer term to help me find trends to act on (if there are indeed any!).

I’ve had conversations with a few different software developers over the years, who are all trying to fill this void of missing technology in the asthma world—things exist, but as I covered in my previous technology post… they don’t fit what I want. Maybe I’m a nerdy anomaly (okay, definitely), but come on, there have to be more of us out there who want useful, interpretable data like other developers, websites, and tech companies are providing to users.

This usually brings me back to a place where, whenever I do decide to quantify the dozen-plus factors I feel influence my asthma, I start to try to build something from scratch. I wanted to do this with as much automation as possible, but, the asthma world is not as connected as I’d like to see yet. I tried a few systems, but essentially gathered the same data.

Here’s what I logged.
Each aspect was also time-/date-stamped.

  • Peak expiratory flow. I intended to log morning and evening values but did this imperfectly, thus the importance of the time stamps.
  • FEV1 (Forced expiratory volume in 1-second). Just another lung function measure captured by my digital meter. Since I’m logging PEF, might as well note down the FEV1 as well.
  • Oxygen saturation. For the most part, oxygen levels are stable in people with asthma. But, since I have a pulse oximeter at my disposal, I threw it into the mix.
  • Humidity (percent). Automatically logged into a spreadsheet each day
  • Step count. Tracked via my Fitbit Charge HR, automatically logged into a spreadsheet.
  • Active minutes. Also logged by my Fitbit Charge HR.
  • Symptoms/severity: Using a Google spreadsheet, I have a column each for coughing, chest tightness, and dyspnea (I don’t wheeze), and a severity ranking of 1 (mild) - 5 (severe) for the time I log that symptom.
    I started off to log an overall daily reflection score of how many times I experienced each symptom and the severity, but figured logging as I went would be more accurate and easier to correlate.

What I’d liked to have added.

  • Air Quality Health Index. Similar to the Air Quality Index in the United States. Both of these systems use a number to indicate how high or low air quality is—in Canada, ours interprets this data to whether or not people in high risk populations should be active outdoors on a particular day. I unfortunately couldn’t get this to log even pseudo-automatically for the places I spend time (Winnipeg, and out in rural Manitoba).
  • Pollen counts. In my area, pollen is ranked as Low, Moderate and High. Since I don’t have significant allergies, the non-specificity worked for me. (Your asthma may vary—I’m not allergic to pollens, at least per my last test, so clumping them together works for me—people with allergies may wish to be more specific if they are nerding out like me.) I’d planned to assign these a 1-3 value for each day, but I couldn't automate this, as hard as I tried—as it has little value to me, I’ll try this again in the future.
  • Location data. I’d like to automatically grab the location tag for where I’m at when I log symptoms and taking my rescue inhaler so I can plot these on a map.

What did I gain?
Well, I got a lot of data, that’s for sure. My logging methods were imperfect, and I switched to a ridiculous system involving QR codes about two weeks in. Here are some visualizations.
Asthma Heatmap

A heatmap of sorts I made in Excel… This is a visualization of almost everything I logged over 10 days (or, 9.5 really. This chart concludes around 2 pm local time on the 28th).
Here’s the legend:

[caption id="attachment_2703" align="alignnone" width="400"]Color legend for heatmap (As I'm uploading this, I realized I should note: Zenhale is the Canadian name for Dulera. And yes, I am not sure what they were thinking!)[/caption]

The symbols in the PEF, or peak flow, yellow zone box are not quite right but was really just to differentiate from FEV1. I wouldn’t read too much into the FEV1 colours either.
I’m not a stats person. Fortunately, Datasense exists (although it’s in Beta still). Here are some cool correlations I found using Datasense.

[caption id="attachment_2705" align="alignnone" width="1072"]The Datasense correlation window with all my data plogged in The Datasense correlation window with all my data plugged in.


X-axis (horizontal) - FEV1 - Y-axis (vertical) - dyspnea
Correlation: strong, that my dyspnea (shortness of breath) does not at all jive with my FEV1 (at least not using 10 days of data).
Limitation (of course): I’ve been having a fairly consistent level of low-grade symptoms throughout the duration of my 10 day experiment, so, not a lot of variation to correlate on.

I’ve also been using Mappiness, a UK-based research app on happiness. Mappiness allows you to download data into .csv format, so, I decided to take a look at how my asthma impacted my happiness in this 10 day span. (Yeah, really.)


X-axis (horizontal) - FEV1 - Y-axis (vertical) - reported relaxedness score; timezone adjusted.
Well, that’s not too surprising: I’m more relaxed when my FEV1 is higher (as in, breathing better).

Now, as I’ve mentioned already, this is only 10 days worth of data. I’m going to keep going, by the way, and see if I can find any bigger patterns in my data—and, if the Asthma.Net community is interested, I’ll be sure to report back. Let me know in the comments.

There are dozens of dozens of other applications, and yes, this is totally over the top (quantified self tends to be a little like that… thus why it’s so cool)—and especially so given my complete lack of statistical knowledge. However, curiosity will forever get the best of me, and, if I can determine any sort of patterns to help me understand my asthma better, well, of course I want to make that happen!

By providing your email address, you are agreeing to our privacy policy. We never sell or share your email address.

This article represents the opinions, thoughts, and experiences of the author; none of this content has been paid for by any advertiser. The Asthma.net team does not recommend or endorse any products or treatments discussed herein. Learn more about how we maintain editorial integrity here.

Join the conversation

or create an account to comment.